At an interview, I was asked to build a python program, using TDD, which would output the results of a minesweeper game.  Not a fully functional game, just a small program that would take an array of bomb locations and print out a map of the board with all values exposed.

So, if you have a 3×3 board, and there is a bomb in each corner, it would print out something like this:

x 2 x
2 4 2
x 2 x

Or if you have a 3×3 board and there is only a bomb in the upper left corner, it would print out something like this:

x 1 0
1 1 0
0 0 0

I did not complete the task in the allotted time, but it was a fun programming exercise and I hope illuminating to the interviewers. I actually took it home and finished it up. Here’s the full text of the program:

class Board:
        def __init__(self, size = 1, bomblocations = []):
		self._size = size
		self._bomblocations = bomblocations
    	
	def size(self):
		return self._size
    	
	def _bombLocation(self,location):
                for onebomblocation in self._bomblocations:
                	if onebomblocation == location:
				return 'x'

	def _isOnBoard(self,location):
		if location[0] =self._size:
		    	return False
		if location[1] >=self._size:
		    	return False
		return True

	def whatsAt(self,location):
		if self._bombLocation(location) == 'x':
			return 'x'
		if not self._isOnBoard(location):
			return None
		return self._numberOfBombsAdjacent(location)

	def _numberOfBombsAdjacent(self,location):
		bombcount = 0
		# change x, then y
		currx = location[0] 
		curry = location[1] 
		for xincrement in [-1,0,1]:
			xtotest = currx + xincrement
			for yincrement in [-1,0,1]:
				ytotest = curry + yincrement
				#print 'testing: '+ str(xtotest) + ', '+str(ytotest)+ ', '+str(bombcount)
				if not self._isOnBoard([xtotest,ytotest]):
					continue	
				if self._bombLocation([xtotest,ytotest]) == 'x':
					bombcount += 1
		return bombcount

	def printBoard(self):
		x = 0
		while x < self._size:
			y = 0
			while y < self._size:
				print self.whatsAt([x,y]),
				y += 1
			x += 1
			print
				
def main():
	board = Board(15,[[0,1],[1,2],[2,4],[2,5],[3,5],[5,5]])
	board.printBoard()

if __name__ == "__main__": 
	main()

And the tests:

import unittest
import app

class TestApp(unittest.TestCase):

    def setUp(self):
    	pass

    def test_board_creation(self):

        newboard = app.Board()
        self.assertIsNotNone(newboard)

    def test_default_board_size(self):
     	newboard = app.Board()
        self.assertEqual(1, newboard.size())	

    def test_constructor_board_size(self):
     	newboard = app.Board(3)
        self.assertEqual(3, newboard.size())	

    def test_board_with_bomb(self):
     	newboard = app.Board(3,[[0,0]])
        self.assertEqual('x', newboard.whatsAt([0,0]))	

    def test_board_with_n_bombs(self):
     	newboard = app.Board(4,[[0,0],[3,3]])
        self.assertEqual('x', newboard.whatsAt([0,0]))	
        self.assertEqual('x', newboard.whatsAt([3,3]))	

    def test_board_with_bomb_check_other_spaces_separated_bombs(self):
     	newboard = app.Board(4,[[0,0],[3,3]])
        self.assertEqual(1, newboard.whatsAt([0,1]))	
        self.assertEqual(1, newboard.whatsAt([1,0]))	
        self.assertEqual(1, newboard.whatsAt([1,1]))	
        self.assertEqual(0, newboard.whatsAt([1,2]))	
        self.assertEqual(0, newboard.whatsAt([2,1]))	
        self.assertEqual(1, newboard.whatsAt([3,2]))	
        self.assertEqual(1, newboard.whatsAt([2,3]))	
        self.assertEqual(1, newboard.whatsAt([2,2]))	

    def test_check_other_spaces_contiguous_bombs(self):
     	newboard = app.Board(4,[[0,1],[0,0]])
        self.assertEqual(1, newboard.whatsAt([0,2]))	
        self.assertEqual(2, newboard.whatsAt([1,0]))	
        self.assertEqual(0, newboard.whatsAt([2,1]))	

    def test_off_the_board(self):
     	newboard = app.Board(3,[[0,0],[1,2]])
        self.assertEqual(None, newboard.whatsAt([3,3]))	

This was written in python 2.7, and reminded me of the pleasure of small, from the ground up software (as opposed to gluing together libraries to achieve business objectives, which is what I do a lot of nowadays).


© Moore Consulting, 2003-2017 +